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The inevitability of the appearance of a “hanging” shock in the flow past bodies with a 
discontinuous generatrix (in the form of a sharp corner) and the properties of such shock 
wave in a plane flow of a perfect gas are established analytically. The case of a low- 
velocity oncoming stream, where entropy variations in the shock wave can be neglected, 
is considered ; use is made of the possibility of a transonic approximation of the shock 

polar line and its intersecting characteristics. 
Ivanov [l] obtained a flow with a “hanging” compression shock in the region behind 

the front shock wave while computing the flow past a body with generatrix possessing a 

sharp corner. This effect had been previously observed in experiments but its cause re- 

mained obscure ; Lighthill ( @I, p. 366). for example, suggested that the shock could have 
been caused by the detachment and subsequent adhesion of the boundary layer in the 

neighborhood of the corner. 

Let us consider the flow of a uniform supersonic stream past a body whose generatrix 
contains a sharp comer (the angle is convex at the corner of the generatrix). Without 

loss of generality we assume that the flow is symmetric, so that we need to investigate 

only the upper half-plane of the flow. The comer point (which we denote by A) sepa- 
rates the front segment OA of the contour from the rear segment AF (0 is the leading 
edge of the profile in the case of an attached shock wave or the critical point in the 
case of a detached wave and F is its trailing edge). The segment OA (of finite length) 
is generally assumed to be curvilinear; the case of a straight segment OA, when the 
front shock wave is attached and the flow behind it supersonic, will be considered sepa- 

rately. The segment AF will be assumed to be essentially rectilinear. We denote the 
angle of its inclination to the axis of symmetry by &, (taken as positive in the counter- 

clockwise direction). The length of the segment A F is infinite for PO >, 0 and finite 
for So < u . If the segment A F is curvilinear, then Br, is taken either as the angle of 
inclination of the profile at the point I: (when AF is of finite length) or the angle of 
inclination of its asymptote (when AP is of infinite length). For fJ,, > 0 we assume that 

fiO is so small that a flow with an attached shock wave (behind which the flow is super- 
sonic) exists near the wedge of vertex angle 36, ; we assume that such flow occurs at an 
infinite distance. 

We denote,respectively, by pi and &, the angles of inclination to the axis of symmetry 
of the tangents to the segments OA and A F of the profile at point A ; owing to the pro- 

file convexity at the corner point, pi > fi2. 
Definitions : 

1) the term “shock wave” will be applied to the front shock wave which arises in 
front of the profile in a uniform supersonic flow. If the shock wave is detached, we 
assume that the region of subsonic velocities is bounded by the sonic line extending 
from the point A to the shock wave; 
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2) the term “secondary compression shock” will be applied to a compression shock 
in the region behind the front shock wave; 

3) the term “hanging compression shock” will be applied to a secondary compres- 

sion shock on both sides of which the flow is supersonic. By analogy with characteristics, 

we refer to it as a shock of the first (second) family, if its tangent is obtained by rotating 

the velocity vector by a positive (negative) acute angle. Hanging shocks belonging to 
different families do not link with each other smoothly. 

The analysis is carried out by conformal mappfng of the region behind the shock wave 
from the Cartesian system of coordinates sy (the r-axis coincides with the axis of sym- 
metry) into the velocity hodograph plane q@ (q = (k + l)‘ls (h - I), where h is the 

velocity coefficient, fi is the angle of inclination of the velocity vector to the axis of 

symmetry, k is the adiabatic exponent ; the axes p and y are directed vertically upward; 

the axes h and I are directed horizontally to the right. We denote points in the physical 

plane by capital letters and their images in the hodograph plane by lower-case letters. 
First, let us consider the flow with an attached shock wave past a profile consisting of 

straight-line segments OA and AF for PO = Bz = 0. In Fig. 1 0~ is the straight segment 
of the shock wave ; AB, AC, AD are straight segments of characteristics of the first 

family; BE is a characteristic of the second family. 

Fig. 1 Fig. 2 

Let us map the region behind the shock wave into the plane qS. 
The image of the region OBEAO is the segment alaa of the second-family charac- 

teristic fi = C - 2/~?“~ (Fig. 2) ; the point al with the ordinate & lies on the shock polar 
fi = 2-‘~(~~+~)‘/~(~~- 11); the point a, lies on the axis q. Equations of the character- 
istics and of the shock polar are given in the transonic approximation. 

Lemma 1. A segment of the characteristic drawn from a point of the shock polar 
in the direction of increasing 11 lies outside the shock polar loop. 

It is easy to verify that for 0 < q < qX the angle of inclination of the characteristic 

of the axis q at the shock polar is smaller in absolute value than that of inclination of 
the shock polar, Now we need only recall that in the plane qJ3 the characteristics are 

invariant with respect to translation in the direction of the B-axis. 
Lemma 1 implies that so > h at the point a,. 
Thus, in the upper half-plane 4 there exists a point of intersection of the character- 



The flow past a body with a discontinuity in its generatrix 1099 

istic segment ala, and the first family characteristic nc drawn from the point n of the 

shock polar which represents the uniform flow in front of the shock wave. 
Theorem 1. If the flow in the region behind the shock wave in a flow with an 

attached shock wave past a profile consisting of straight-line segments OA and A F is 

supersonic, then it is not continuous. 
Let us consider in the physical plane the node of the first family characteristics emerg- 

ing from the point A (called in the following “node A”). If the flow behind the shock 
wave is everywhere supersonic and continuous, then each characteristic of the node either 

intersects the shock wave or extends to infinity. Accordingly, in the hodograph plane 
each first family characteristic passing through the characteristic ala, must reach either 

the shock polar or the point n, which also lies on the shock polar and represents a uniform 

straight-line flow at infinite distance. 

We thus have a contradiction, since the first family characteristics emerging in the 
$-plane from points of the segment ca, cannot reach the shock polar. Hence, if the 

flow behind the shock wave is supersonic, a secondary compression shock must appear. 

With suitable alteration in its formulation. Theorem 1 is also valid for the case of a 
detached shock wave; in accordance with the “law of monotonicity” of the velocity 

vector at the sonic line [3], the characteristic representing the corner point lies outside 
the shock polar (above it) in the plane T$. 

The assumptions about the rectilinearity of the segments OA and A F are not essential. 
If the profile is curvilinear and PO < 0, we can prove our statement by specifying pz ( 

< PC. If the segment is rectilinear, this condition becomes PO < PC. 

Let us suppose that one or more secondary shocks generated in the region behind the 
shock wave are hanging shocks of the first family. Let us determine the basic properties 

of these compression shocks, which we shall henceforth refer to simply as shocks. In the 
plane T$ the images of points along the shock (in front and behind the shock) lie on the 

shock polar segment Pa = & + 2-l/’ (ql + T&l’ (ql - q2), pa > /3I 

Lemma 2. The image of the vertex of the profile convex angle in the $-plane 
is a segment of a characteristic which is devoid of cusps. The image of the vertex neigh- 
borhood covered by the characteristics of the node (lying at this vertex) in the plane 
$ is one-sheeted and lies on one side of the characteristic - the image of the corner 

vertex. 

That the comer point is represented in the hodograph plane by a characteristic is shown 
in [4]. This implies that the node of characteristics of another family lies at this point. 

As we know, the image of the physical plane xy in the plane cpll, for O<h < (k + 
+ f)“‘(k- I)-‘/’ is a one-to-one map (9 is the velocity potential and p is the stream 
function) [4]. This means that in the (pll -plane the comer point is represented by a 

point. The angle of inclination y of the characteristics in the plane q@ to the line 
1c, = const is calculated by the formula 

dv 
ctg r = dzl, = 

htdsl i;(k-1) 

hdsz 
ds, = h,dq, ds, = i& 

(i) 

Here h,, h2 are the Lame’ coefficients, M is the Mach number, and p is the Mach 
angle. 

In the plane w the characteristics emanating from the comer point lie at thedicritical 
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node in the order of decreasing y, i.e. in the order of increasing velocity. Hence, in the 
presence of a cusp in the characteristic representing the corner point in the plane T$, the 
plane 99 (hence, also. in the physical plane) would contain a fold, which is impossible. 

Let us consider in the plane 4 the image of the neighborhood G of the corner point 
covered by the node characteristics. Let us suppose that the characteristic segment ata 
representing the corner point, contains a point such that to the left of it G lies to one 
side of ai%, and to the right of it, it lies to the other side of this segment. In this case 

there must be a fold in the map in the plane rf3; as we know [4]. the edge of the fold 
(the branch line, where the Jacobian 6’ (n,p) / a (5, I/) changes sign) in a potential flow 
is a characteristic. This characteristic and the image of the corner point belong todiffer- 

ent families: hence.the branch line is a node characteristic. It is also clear that along the 
node characteristics arbitrarily close to this characteristic and lying to different sides of 

it, the velocity distributions would be different (in the plane Y$ they lie to different 

sides of the characteristic at%). This is impossible, sine along a characteristic the flow 
is continuous, 

It is convenient at this juncture to formulate separately the known property of relative 
disposition of characteristics and the compression shock (see e. g. p]). 

Lemma 3. The angle of inclination of a compression shock to the velocity vector 
ahead of the shock (behind the shock) is larger (smaller) than the Mach angle at the 

corresponding point. 
We apply the term “origin” (“end”) of a hanging shock to that point of the shock 

where the value of 9 at the shock is smallest (largest) when 11 is measured from the pro- 
file, 

Theorem 2. The shock origin cannot lie on inner characteristics of node A. 

A shock cannot emerge from the point A , if its intensity at this point is zero and if 

it is tangent to one of the inner node characteristics at this point. since this would con- 

stitute a violation of the analyticity of the Prandtl-Meyer solution. 
It is also impossible for a shock to emerge from the point A, if its intensity there 

is not zero, since in this case the shock line would belong to the dicritical node of char- 
acteristics at the point A, which would imply multivalence in the physical plane, 

NOW let us suppose that the shock originates some distance from the point A in the 

region covered by node characteristics, Lemma 3 implies that the characteristics which 
emerge from the point A travel in the reverse direction after intersecting the shock and 
therefore arrive at the point A once again. This cannot happen, since on connecting in 
the plane $ the characteristics which emerge from a,a, by a segment of the shock polar 
corresponding to the first-family shock (the groken line in Fig. 2), we find that the map 
of the neighborhood of the point A is multivalent, which contradicts Lemma 2. 
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Let us consider the particular case of flow past a profile with straight segments OA 

and AFwhen the flow behind the attached shock wave is supersonic. We denote by H 
the region bounded by the second-family characteristic ED and the first-family charac- 
teristics which pass through the points E and 1) in the direction away from the profile 
(Fig.l).Since the region N is adjacent to the triangle ADE in which the flow is uniform 

and rectilinear, it follows that the flow in this region is a simple wave (the second-family 
characteristics are straight), The characteristic ADN is a boundary of the region H. 

Theorem 3. In the case where there exists a region H, the origin of the shock 

lies neither in H nor on the characteristic A1)N. 

Let us suppose that the opposite statement holds. The image in the plane T$ of the 

shock ~ne(behind theshock)in some neighborhood of its origin is a first-family charac- 

teristic which passes through the point a%. 

Constructing the segment of the shock polar corresponding to a first-family shock 
through any point of this characteristic, we find that the image of the shock line (in front 
of the shock) lies outside the region covered by the first-family characteristics which 

emerge from the segment ai%. This contradicts Lemma 3, since the first-family charac- 
teristics constructed from the shock (in some neighborhood of its origin) in the region in 
front of the shock either belong to node A or lie in the region H. 

If a decrease of the velocity potential cp corresponds to some displacement in the 
physical plane, we say that this displacement is “downstream”. 

Lemma 4. A hanging shock lies downstream from its terminal point (its origin or 

end). (*) 
Without loss of generality, we confine ourselves in proving this lemma to the second- 

family hanging shock shown in Fig. 3 in the coordinates q$ (the solid curves are charac- 

teristics, the broken lines are shocks). We propose to show that the case appearing as 
Fig. 3b is impossible. 

Let us suppose that the opposite statement holds. In accordance with Lemma 3, two 
second-family characteristic rays which lie on opposite sides of the shock and are tan- 

gent to each other, emerge upstream of point L (the origin of the shock). Let it4 be a 
point on the characteristic ray in the region in front of the shock chosen sufficiently 
close to the point I;; Mli is a first-family characteristic; X is a point on the second- 
family characteristic ray LK (behind the shock) ; N (N-, ;V+) is the point of intersection 
of the characteristic JMlz with the shock ahead and behind the shock. 

Since the rays MLand Ir’L are tangent at the point L we have j yK 1 > fr,l. 
In fact, if the characteristics ML and KL have opposite convexities (one towards the 

other), then near the point L we have 

i ?Id > kL\ >khd 

Now let the characteristics near L have their convexities similarly directed. Let us 

take the equations of characteristics in the form y = y (I) and y. = y, (x0); the angles 
y are then equal at the points W, z) and (~0, ~0) . This means that 

dy / dx = dYo / dxo, Y - Yo = k (x0)(5 - 50) 

*) In [S], p. 553 (Fig, 109a) the authors express the sup~ition that an “arriving” hanging 
shock cannot degenerate at the sonic line or near it; the proof of Lemma 4 subsumes 
also this case. 
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Here k (x,,) is the slope of the straight lines connecting points with equal y on the 
characteristics KL and ML.Differentiating the second equation with respect to x0 and 
using the first equation, we obtain 

dk d j/n ----_++=A 
d In s dxo ’ s=zr--_o 

Integration of this equation yields 

The constant C appearing in this expression must be equated to zero, since otherwise 
k would become infinite as s + 0 in any coordinate system x, y, which is impossible. 

Thus, we have k = dy&& at the point L . If the velocity is supersonic at the point 

L , then the direction of the first-family characteristics at the points M, K near L dif- 
fers from that of lineas y = con&. From this we readily infer that 1 yK I> 1 I’M 1, so 
that (1) implies that VK < qMS If the velocity at the point L is sonic, the same result 
follows from the analysis of the formula for k with the sign of the derivative 

d (.) I b (dy,, / dx,,) 

in the neighborhood of the point L taken into account. 

Consideration of the mapping of the neighborhood of the point L into the plane $ 
with the aid of Lemma 1 yields the opposite inequality ?lK > qM. Figure 4 shows the 

two possible positions of the point n- (ni- and nz-) relative to the point m. Here 

n, n2 , nl+kll .n,+k, are first-family characteristics ; nlwn,+, nzenz+ are segments of the 

second-family shock polars. 

Corollary 1. The end of a first-family shock (where it degenerates into a charac- 

teristic) lies infinitely far from the profile. 
Corollary 2. If a first-family shock intersects either the shock wave or another 

shock, its intensity is not equal to zero at the point of intersection. 

Lemma 5. At the shock wave J = 3 (11, p) / 8 (XI Y) < 0. 
Since 9 < 11, at points of the shock wave, for small q, the flow in the neighborhood 

of the shock wave is described by the transonic flow equations 

(k + l)““q~ - &, = 0, (k + 1)“3 &, - Q, = 0 (2) 

Adding to the above equations the derivatives in the direction of the shock wave sim- 

plified for the transonic velocity range, 

we obtain a system for finding the derivatives qp, Q, pQ, p+; these derivatives are pro- 
portional to x , as is the right side of the system. 

Here 8 is the angle of inclination of the shock wave to the vertical axis, d(e) / ds 
is the derivative in the direction of the shock wave ; the derivatives + / d8 and dq I dB 

are computed from the relations at the shock wave in the transonic approximation, 

The Jacobian at the shock wave satisfies the relation 
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As we know 141, in the subsonic range J < 0. 

Corollary. If a characteristic is a branch line, its reflection from the shock wave 

is also a branch line (a characteristic of another family). 

Lemma 6. If a certain segment of a characteristic is a branch line, then the entire 

characteristic is a branch line, 
Let us suppose that a certain point inside the flow region bounds a segment of a char- 

acteristic which is a branch line. Since a branch line cannot terminate inside a flow 

region, this point also bounds the branch line (a segment of a characteristic belonging 
to another family). Thus, the neighborhood of this point in the physical plane is divided 

by four characteristic rays into four sectors, in three of which J has the same sign, and 

the opposite sign in the fourth. This is impossible, since the domains with differing signs 
of J could then be mapped univalently onto the same sector formed in the plane qp by 

two characteristic rays belonging to different families. 
Let us denote by Q the region bounded by the shock wave, by the segment CIA of the 

profile, by a hanging shock, and by the last characteristic of node A (Fig, 1). In accord- 
ance with Theorems 2 and 3 the origin of a shock lies either on this characteristic or on 

a first-family characteristic lying downstream of it. Considering the mapping of the 
domain Q into the hodograph plane, we find that the fIow in the domain Q does not 

depend on the shape of the segment AF of the profile. This property was noted in fl]. 

Let us take, for example, the case of a straight segment OA when the flow behind the 
attached shock wave is supersonic. The image of the region Q lies in the region T 
bounded by the shock polar aln, by the second-family characteristic a,a, (at the point 

% P = $01, and by the first- and second-family characteristics aam and nm (Fig. 2). 
To determine the stream function % in the region T, we specify at the characteristic 

alus and at the shock polar the boundary conditions 

$=f(q), l$,,-lJ$ (n!!)” 7qc0iq -0 
5rloo + 3rl- 

The function f (TV) is defined as the value of the stream function at the second-family 
characteristic BD (Fig, 1). 

In the case of a detached shock wave the region 2’ contains the minimum region of 

influence of the segment OA; the boundary of the supersonic-velocity subregion of the 

region T consists of the indicated parts plus the segment of the line r~ = 0 which con- 

nects the shock polar and the characteristic al%+ 

Theo r e m 4. The mapping of the domain Q into the plane qb is one-sheeted, and 
J < 0. 

As we know, J < 0 for q < 0, so that it is sufficient to prove the univalent charac- 
ter of the mapping of the supersonic subregion of 2’. 

Lemma 2 implies that the first-family characteristics (they belong to the node A) 

cannot be branch lines. Lemmas 5 and 6 also imply that second-family characteristics 
which emerge from the shock wave cannot be branch lines, since otherwise each of them 
would be a reflection from the shock wave of a branch line which is a first-family char- 
acteristic emerging from the node A. In the case of a detached shock wave the boundary 
of the subregion of 2’ contains the sonic line ; applying instead of Lemma 5 the “law of 
monotonic&y” p] together with Lemma 2, we find that characteristics emerging from 
the sonic line also cannot be branch lines. Applying Lemma 5, we find that J < 0 in 
the region T. 
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Theorem 4 implies the following corollary. 
The segment of the shock wave which bounds the region Q has its convex side directed 

toward the oncoming stream, 

Lemma 7, Along the sraight segment of the profile J,<O for ,r]<O and J;>O for 

q>O. 
Using (2). we transform the expressions for J, and obtain 

Corollary. If a characteristic is a branch line, then its reflection from a rectilinear 
profile (a characteristic of a different family) is also a branch line. 

Let us denote by 2 the origin of the shock bounding the region Q, and by V the point 
of intersection of the last characteristic of node A with the shock (if the shock begins 
elsewhere than on this characteristic). Let us extend the secod-family characteristic ZW 

until it intersects the profile at the point W. Let P be either the region bounded by the 
characteristics AZ, ZW’ and by the profile segment A II: 

(if the point 2 lies on the last node characteristic) or 
the region bounded by the characteristic A V, the shock 

1’2, the characteristic 2 W. and the profile segment A I%‘. 
From Theorem 4 and Lemmas 6 and 7 we have: 

Theorem 5. In the flow past a profile with a 
rectilinear segment d F the last characteristic of node 
A is a branch line. (If a region H exists, then J has 

Fig. 5 
different signs on either side of this region), The map- 
ping of the domain Y onto the plane $3 is one-sheeted, 

and J > O.The velocity decreases monotonically as we travel away from the point 11 
along the segment AK 

Theorem 6. In the flow past a profile with a straight segment AP for R0 < 0 a 

shock does not intersect the shock wave ; moreover, there exist no other hanging first- 
family shocks. ( * ) 

Let us denote the rI3-image of the shock line bounding the region Q in the region 

ahead of the shock by L-and in the region behind the shock by L,. The line L_ lies in 

the region I’. Since the corresponding points of the lines L_ and C, are jointed by first- 

family segments of the shock polar% we can apply Lemma 1 to find that the line L, lies 
in the plane t$ in the region situated above the second-family characteristic rnn(we 

are referring to the entire characteristic). 
Let us suppose that the shock which bounds Q intersects the shock wave ; we denote 

the point of intersection by S. From the point S we extend a first-family characteristic 
SS, to the profile (Lemma 2 implies that the characteristic SS, does not intersect other 

first-family shocks, even if they exist), From the points S, we draw the second-family 
characteristic SIS, to its intersection with either the shock or the shock wave at the 

point S,. 
By hypothesis the point 5’ lies at a finite distance from the profile, and the velocity 

*) This statement does not follow from the theory of flow at infinite distances from a 
profile [5]. As the present author was informed by 0,s. Ryzhov, this theory admits of 
the existence of shock waves between the bow and tail shock waves, but with a more 
rapid law of intensity decrease. 
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at the point S (behind the shock) is lower than the velocity of the oncoming stream. 
Hence, the point s, which is the ‘@-image of S, does not coincide with the point n. In 

other words, ps > ba. 
Having constructed the characteristics ss, and sis,, we find that the point s, lies in 

the plane t@ under the characteristic mn (Fig. 5). This means that the point s, does not 

belong to the line L,. Moreover, Lemma 1 implies that the point sa cannot lie on the 

shock polar. Thus, our assumption that a shock can intersect the shock wave has led to 

a contradiction. 

To prove the uniqueness of the shock we merely need to show, in accordance with 
Lemma 2, that the region behind the shock which is covered by first-family character- 

istics (we denote this region by H) is not bounded downstream by any first-family char- 
acteristic. 

Let us suppose that the opposite statement holds. Then there exists a “last” first-family 
characteristic a which “intersects” the shock at an infinite distance. We shall show that 
the image of this characteristic is the point n. In fact, the q$-image of the domain R 

and of the characteristic (;I lies above the characteristic mn. This means that on the pro- 
file segment which belongs to the region fi we have TV >, qn (we note, recalling Lemma 
7, that the same estimate holds on the line L-_, in some neighborhood of the point n). 

If the image of the characteristic lies above mn, then some neighborhood of its point 

of intersection with the profile lies above the straight line p = &However, this contra- 

dicts lemma 7. 
We therefore conclude that, if the characteristic z exists, the flow along this charac- 

teristic must be uniform and rectilinear. This in turn implies that in some subregion of 

H,which is bounded by a shock, the flow is a simple wave (the first-family characteristics 
are straight in this case). Hence, some segment of the line L, in the neighborhood of 
the point n lies on the characteristic mn. However, the corresponding segment of the 

line L_ would (by Lemma 1) lie below the characteristic mn,, which is impossible. 
Theorem 7. The following estimates are valid : 

1) on the segment of the line L_ bounding the image of the region Q 

dn/ds<O, I @ I dq I < di 

2) on the segment of the line L_ bounding the image of the region P 

IdPi +I > l? 

3) in flow past a profile with a straight segment AF for B, < 0 at the line L, in 
the neighborhood of the point n dq I ds < 0 

4) if a hanging shock originates at the last characteristic of node A, then in flow 

past a profile with a straight segment A F on the line L, in the neighborhood of the 
origin of the shock 

dq I ds < 0 

Here s is the length of the shock arc measured from the profile. 

Estimates (1). (2) and (4) were derived from Theorems 4 and 5 and from Lemma 6 
with the order in which the shock is intersected by characteristics in the physical plane 
taken into account. Estimate (3) follows from the condition obtained in proving Theo- 
rem 6, whereby TV >, tlln at the line L c in the neighborhood of the point n . 

Theo r e m 8. In the flow past a profile with a straight segment A F for & q: 0 
the shock at an infinite distance has its convex side towards the region behind the 
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shock. (*) 
Differentiating the second expression of (3) with 

Q+ , drl- 43 
respect to S, we obtain 

dfi 
ds + ds = (k + i)% ds 

Making use of Estimates (1) and (3) of Theorem 7, we arrive at the estimate d6 /ds < 0. 

In flow past a rhombic profile (for PO < 0) , a “tail” shock emerges from the point F. 

If the dependence of the flow on the parameter fl,, is continuous, then at least for suffi- 

ciently small values of I &, 1 an inner shock arises in addition to the tail shock. In fact, 

as fi,, -+ 0 the point P moves into infinity, and the tail shock vanishes, so that the shock 
whose existence was proved for p,, = 0 is not a tail shock. 

Theorem 6 with allowance for Lemma 3 implies the following. 

Corollary. If an interior shock exists in flow past a profile with a straight segment 

AF and p,, < 0 , then the tail and interior shocks intersect, forming a V-shaped shock. 

Let us consider the flow past a profile with a straight segment AF for PO > 0. A hang- 
ing shock need not arise for flow past such a profile (the condition of appearance of a 

shock was stated above). 

Theorem 9. If a shock exists in the flow past a profile with a straight segment 

AF for PO > 0 , then this shock intersects the shock wave. At the point of intersection 
at the shock wave we have p < /3,, behind the shock. The shock wave at the segment 

lying downstream from the point of intersection with the shock (or downstream from the 
point of intersection with the last characteristic of node A if a shock does not exist) consists 

of an infinite number of segments with pairwise-different signs of curvature of the shock 
wave ; the oscillations of the angle of inclination decay with distance from the profile 

(the property of oscillation of the angle of inclination of the shock wave is compatible 

with the theory of propagation of perturbations in flow past a wedge-shaped profile [6]). 

Let us suppose that a shock does not intersect the shock wave. Since the flow at an 
infinite distance from the point .4 becomes uniform and rectilinear, the shock degener- 

ates at infinity into a first-family characteristic. A contradiction arises, since in uniform 

flow near a wedge the characteristic travels from the wedge towards the shock wave. 

The intensity of a shock at the point .~ where it intersects the shock wave differs from 

zero (Corollary 2 of Lemma 4). A rarefaction wave then emerges from the point S , 
since the shock polar constructed from some point of a different shock polar does not 
intersect it (lies within it; this property of shock polars in the transonic approximation 

is noted in u], in the remark on p. 182). It is easy to show that the rarefaction wave is 
represented by the node of second-family characteristics. 

Just as we showed the impossibility of intersection of a shock and shock wave in Theo- 
rem 6, we can prove that p <PO behind the shock at the point S on the shock wave. 

It is easy to show that the shock wave on the segment downstream from the point S 
is not straight ; to this end we need merely extend the second-family characteristics of 
the rarefaction node to the segment AF and then draw their reflections (first-family 
characteristics) to the shock wave. 

let us take an arbitrary point on the shock polar downstream from the point S (if 

*) The Corollary of Theorem 4 and Theorem 8 are compatible with the theory of flow 
at infinite distances from a profile [5]. 
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there are several shocks, then we take the point of intersection with the last shock as our 
s ). From this point we first construct the second-family characteristic to the profile, 

then the second-family characteristic to the shock wave, etc. The images of these char- 
acteristics in the plane n3 form a broken “helix” consisting of segments of the correspond- 

ing characteristics ; applying Lemma 1, we find that this helix “winds around” the point 
of intersection of the shock polar with the straight line B = PO. Thus, the shock wave 

consists of successive segments with differing signs of curvature ; the “amplitude” of the 
oscillations of the angle of inclination of the shock wave decreases as we move along the 
shock wave in the direction away from the profile. 

This property can be proved in similar fashion in the case where there is no compres- 
sion shock. 

1. 

2. 

3. 

4. 

5. 

6. 
7. 
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